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Abstract. We study the low-temperature thermodynamic properties of a number of frustrated quantum
antiferromagnets which support localized magnon states in the vicinity of the saturation field. For this
purpose we use (1) a mapping of the low-energy degrees of freedom of spin systems onto the hard-core
object lattice gases and (2) an exact diagonalization of finite spin systems of up to N = 30 sites. The
considered spin systems exhibit universal behavior which is determined by a specific hard-core object
lattice gas representing the independent localized magnon states. We test the lattice gas description by
comparing its predictions with the numerical results for low-lying energy states of finite spin systems.
For all frustrated spin systems considered we find a strong variation of the low-temperature specific heat
passing the saturation field and a maximum in the isothermal entropy at saturation field resulting in an
enhanced magnetocaloric effect.

PACS. 75.10.Jm Quantized spin models – 75.45.+j Macroscopic quantum phenomena in magnetic systems
– 75.30.Sg Magnetocaloric effect, magnetic cooling

1 Introductory remarks

Quantum spin antiferromagnets on geometrically frus-
trated lattices have attracted much attention during last
years [1–3]. A new and rapidly developing direction in
this field of quantum magnetism is a study of the low-
temperature properties of such systems in the presence
of an external magnetic field. The Zeeman interaction of
spins with a magnetic field competes with the frustrating
antiferromagnetic interspin interactions that may lead to
new phenomena. Recently it has been found that a wide
class of geometrically frustrated quantum spin antiferro-
magnets (including the kagomé and pyrochlore antiferro-
magnets) has quite simple ground states in the vicinity
of the saturation magnetic field [4–6] (for a review, see
Refs. [7,8]). These ground states consist of independent
(i.e. isolated) localized magnons in a ferromagnetic envi-
ronment. The localized magnon states were used to pre-
dict a ground-state magnetization jump at the saturation
field [4–6], a magnetic field induced spin-Peierls instabil-
ity [9,10], and a residual ground-state entropy at the sat-
uration field [3,8,11–13]. Moreover, in references [8,12,13]
the concept of localized magnons was used for a detailed
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analysis of the low-temperature magnetothermodynamics
in the vicinity of the saturation field for two represen-
tative systems, the sawtooth chain (or ∆-chain) and the
kagomé lattice. In particular, the authors of these papers
mapped the low-energy degrees of freedom of the saw-
tooth chain (the kagomé lattice) to the hard-dimer gas
on a one-dimensional lattice (the hard-hexagon gas on a
triangular lattice) and used the results for the classical
lattice gases to discuss the properties of the spin systems.
They also provided exact diagonalization data for finite
sawtooth chains (up to N = 20 sites) to illustrate the ef-
ficiency of the hard-dimer description of the spin chain at
low temperatures near the saturation field.

In the present paper we extend the previous studies on
the low-temperature strong-field magnetothermodynam-
ics examining various other frustrated quantum spin an-
tiferromagnets supporting localized magnon states. We
emphasize that all such spin systems exhibit a univer-
sal behavior. It is determined by a specific hard-core ob-
ject lattice gas which mimics the independent localized
magnon states. Thus, the one-dimensional hard-dimer be-
havior is also inherent in the two-leg ladder or kagomé-like
chains, whereas the hard-hexagon behavior is also inher-
ent in the star lattice (see Tab. 1 below). Moreover, we
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Table 1. Specific and generic properties of the spin systems shown in Figures 1 and 2. ε1 is the difference between the energy
of the fully polarized state and the energy of the one-magnon state in zero field and determines the saturation field h1 = ε1,
nmax is the maximum number of independent localized magnons for the closest possible packing, N is the number of sites in
the auxiliary lattice with hard-core objects, N is the number of sites in the spin lattice.

Lattice Relation between Jij ε1 nmax/N N/N Universality class

Fig. 1a J2 ≥ 2J1 2s(J1 + J2) 1/3 1/3 monomers

Fig. 1b J3 ≥ Jc
3 (J1, J2); 2s(J1 + J3) 1/4 1/4 monomers

if J1 = J2 then J3 ≥ ((1 +
√

5)/2)J1

Fig. 1c J2 = 2J1 8sJ1 1/4 1/2 dimers

Fig. 1d J2 ≥ 2J1 2s(2J1 + J2) 1/4 1/2 dimers

Fig. 1e all bonds have the same strength J 6sJ 1/6 1/3 dimers

Fig. 1f J2 = (3/2)J1 6sJ1 1/10 1/5 dimers

Fig. 2a J2 ≥ J1 2s(J1 + 2J2) 1/6 1/6 monomers

Fig. 2b all bonds have the same strength J 6sJ 1/9 1/3 hexagons

Fig. 2c all bonds have the same strength J 5sJ 1/18 1/6 hexagons

Fig. 2d all bonds have the same strength J 8sJ 1/8 1/2 squares

examine the thermodynamic properties of the spin mod-
els which are described by a gas of monomers. We also
provide exact diagonalization data for finite spin systems
of up to N = 30 sites and discuss to what extent a hard-
core object description can reproduce the properties of
the spin systems. We compare analytical and numerical
results for different one-dimensional lattices and for the
two-dimensional square-kagomé lattice.

The remainder of the paper is organized as follows. In
Section 2 we introduce the spin models to be discussed.
In Section 3 we discuss a hard-core object description of
the independent localized magnon states. We also consider
how the lattice gas description can be extended for a wider
temperature/field region. In Section 4 we present the ex-
act diagonalization data for finite systems and compare
them with the analytical predictions which follow from
the hard-core object picture. We discuss briefly the effects
of the localized magnons on the temperature dependence
of the specific heat and the magnetocaloric effect near the
saturation field. Finally, in Section 5 we summarize our
findings.

2 Geometrically frustrated spin models
and localized magnons

In this paper we consider several frustrated quantum spin
lattices discussed so far in the literature by various au-
thors, namely, the diamond chain [14], the dimer-plaquette
chain [15], the sawtooth chain [16], the two-leg ladder
[17], two kagomé-like chains [18,19] (Fig. 1), the square-
kagomé lattice [20], the kagomé lattice [3,5,21], the star
lattice [3,22], the checkerboard lattice [23] (Fig. 2). (Note
that further models hosting localized magnons can be con-
structed.) The Hamiltonian of the system consisting of N

antiferromagnetically interacting spins in a magnetic field
h reads

H =
∑

(ij)

Jijsi · sj − hSz

=
∑

(ij)

Jij

(
1
2
(
s+

i s−j + s−i s+
j

)
+sz

i s
z
j

)
−hSz, Sz =

∑

i

sz
i

(1)

with s2
i = s(s + 1) and Jij > 0. From references [3–7] we

know that for certain relations between Jij (see Tab. 1)
all spin lattices shown in Figures 1 and 2 support local-
ized magnon states which become relevant at strong mag-
netic fields. In what follows we fix the energy scale by
setting either J = 1 (for systems with only one exchange
integral) or J1 = 1 (for systems with more than one ex-
change integral). For the diamond and dimer-plaquette
chains and for the two-leg ladder the magnons may be
localized on the vertical bonds (see panels a, b and d in
Fig. 1), for the sawtooth chain the localized magnons may
be trapped in a valley between two neighboring triangles
(panel c in Fig. 1), whereas for other lattices the localized
magnons may occupy the even polygons shown by fat lines
in Figures 1, 2. The explicit expressions for the localized
one-magnon state having the smallest possible region of
localization read

|1lm〉 ∝ (|s − 11, s2〉 − |s1, s − 12〉) |s, . . . , s〉

(panels a, b and d in Fig. 1),

|1lm〉 ∝ (|s − 11, s2, s3〉 − 2|s1, s − 12, s3〉
+ |s1, s2, s − 13〉

)|s, . . . , s〉
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Fig. 1. (Color online) Several one-dimensional frustrated quantum spin lattices supporting localized magnon states: the diamond
chain [14] (a), the dimer-plaquette chain [15] (b), the sawtooth chain [16] (c), the two-leg ladder (the spins are sitting only on
the squares, not on the intersections of the diagonals) [17] (d), and two kagomé-like chains [18,19] (e and f). The trapping cells
occupied by localized magnons are shown by fat lines. Below each lattice we show the corresponding auxiliary lattice filled by
hard-core objects (monomers (a and b) and dimers (c, d, e and f)).

(panel c in Fig. 1),

|1lm〉 ∝
∑

m

(−1)ms−m|s, . . . , s〉

(the sum over m runs, say, counterclockwise over the sites
m of a trapping polygon in panels e and f in Fig. 1 and
in all panels in Fig. 2). Here si or s − 1i denote the val-
ues of sz

i and s is the maximal possible value of sz
i . We

start with the zero-field case. The energy of the local-
ized one-magnon state can be written as EFM − ε1, where
EFM is the energy of the fully (ferromagnetically) polar-
ized spin system and the values of ε1 for the considered
systems are given in Table 1. We can fill the spin lat-
tice by n = 1, . . . , nmax, nmax ∝ N (see Tab. 1) inde-
pendent localized magnons. Each localized magnon de-
creases the magnetization Sz by 1 and the state with n
localized magnons has Sz = Ns − n. The independent
localized magnon states are the lowest-energy states in
the corresponding sectors of Sz = Ns− 1, . . . , Ns− nmax

[4,24]. Although the localized magnon states exist also for
anisotropic XXZ Heisenberg exchange interaction in (1)
and arbitrary spin length s, in what follows we restrict our-
selves to the isotropic (i.e. XXX) Heisenberg exchange in-
teraction and (in numerical computations) to the extreme
quantum case s = 1/2 without loss of generality for dis-
cussion of the universal low-temperature behavior of the

spin systems near the saturation field. However, we have
to bear in mind that the effects of the localized magnon
states are true quantum effects which become less and less
pronounced as s → ∞ [5,11].

Consider now the localized magnon states in the pres-
ence of an external field h. A localized one-magnon state
has the energy E1(h) = EFM − hsN − ε1 + h, whereas a
state with n independent localized magnons has the en-
ergy

En(h) = EFM − hsN − n (ε1 − h) . (2)

Evidently, n independent localized magnons can be placed
on a lattice with N sites in many ways. We denote by
gN(n) ≥ 1 the number of ways in which n independent
localized magnons, each occupying the smallest possible
area, can be put on a lattice with N sites. The energy
of any of these gN (n) states is the same and is given by
equation (2), i.e. gN(n) is the degeneracy of the indepen-
dent localized n-magnon states. At the saturation field
h1 = ε1 the energy En(h1) (2) does not depend on n that
further increases the degeneracy of the independent local-
ized magnon states.

Let us briefly recall the consequences of the local-
ized magnons [3–13]. Due to the localized magnons dif-
ferent spin systems have identical/universal behavior in
the ground state in strong magnetic fields. Since the
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Fig. 2. (Color online) Several two-dimensional frustrated quantum spin lattices supporting localized magnon states: the square-
kagomé lattice [20] (a), the kagomé lattice [3,5,21] (b), the star lattice [3,22] (c), and the checkerboard lattice (the spins are
sitting only on the squares, not on the intersections of the diagonals) [23] (d). The trapping cells occupied by localized magnons
are shown by fat lines. Below each lattice we show the corresponding auxiliary lattice (square (a and d) and triangular (b and
c) lattices) filled by hard-core objects (monomers (a), hexagons (b and c) and squares (d)).

lowest-energy states with different numbers of indepen-
dent localized magnons n = 1, . . . , nmax have the same
energy at the saturation field h1, EFM−h1sN , the ground-
state magnetization exhibits a jump at h = h1 between the
values Ns and Ns − nmax. This jump is accompanied by
a preceding plateau. Next, the ground-state energy at the
saturation field exhibits a huge degeneracy which grows
exponentially with the system size (at least as 2nmax) and

hence the ground-state entropy per site remains finite at
h = h1. Finally, a lattice distortion which preserves the
symmetry of the cell which hosts a localized magnon may
lower the total ground-state energy (which consists of the
magnetic and elastic parts). This deformation, which ob-
viously cannot exist for h > h1, leads to a field-tuned
ground-state structural instability in the vicinity of the
saturation field.
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One may expect that the contribution of localized
magnons is dominant also at low temperatures and strong
magnetic fields around the saturation field. The analysis
for the sawtooth chain and the kagomé lattice reported
in references [8,12,13] supports this expectation. We now
move on to discuss the contribution of the independent lo-
calized magnons to the low-temperature properties of the
considered spin systems in the vicinity of the saturation
field.

3 Independent localized magnons
and classical lattice gases

In this section, we examine the contribution of the inde-
pendent localized magnons to the thermodynamic quanti-
ties of the spin systems. Moreover, we use for this purpose
a hard-core object representation of the independent local-
ized magnons of the smallest area. Such a representation
allows us to utilize the broad knowledge on classical lattice
gases. In the context of this approach a number of ques-
tions naturally arise which we have to consider. First, one
has to show that the independent localized magnon states
of smallest area are linearly independent in each sectors
of Sz = Ns − 1, . . . , Ns − nmax. Only in this case they
all contribute to the partition function of the spin system.
Although there is no proof of the linear independence of
the independent localized magnons in the general case,
this question has been discussed in references [8,13] and
a rigorous proof for all spin systems shown in Figures 1, 2
is given in reference [25]. Thus, it was shown that for the
diamond chain, the dimer-plaquette chain, the two-leg lad-
der, and the square-kagomé lattice (the orthogonal type of
frustrated spin systems in the nomenclature of Ref. [25]) as
well as for the sawtooth chain and two kagomé-like chains
(the isolated type of frustrated spin systems) the indepen-
dent localized magnon states are linearly independent in
every sector of Sz = Ns − 1, . . . , Ns − nmax. Moreover,
for a system of the orthogonal type they form an orthog-
onal basis. The kagomé lattice, the star lattice and the
checkerboard lattice belong to the frustrated spin systems
of codimension one type. They possess exactly one non-
trivial linear relation between their localized one-magnon
states, but the set of n independent localized magnon
states is linearly independent for n = 2, . . . , nmax [25].
Thus, in the thermodynamic limit the linear independence
of the localized magnons is fulfilled for all considered spin
systems.

Next, we have to check that there are no other low-
energy states (except the independent localized magnons)
in every sector of Sz = Ns − 1, . . . , Ns − nmax, or at
least to show, if they do exist, that their contribution
is vanishingly small in the thermodynamic limit. In ref-
erences [8,13] it was shown that for the kagomé lattice
there are indeed a few classes of states in the sectors
Sz = Ns− 1, . . . , Ns−nmax which cannot be represented
in terms of the independent localized magnons of smallest
area. Thus, it remains unclear whether these additional
states contribute to the partition function in the thermo-
dynamic limit. In our numerical data (see Tabs. 2 and 3

below) we also find extra spin states for the diamond chain
with J2 = 2J1, the square-kagomé lattice with J2 = J1,
the two-leg ladder with J2 = 2J1 and two kagomé-like
chains (but not for the diamond chain with J2 = 3J1, the
dimer-plaquette chain with J2 = J1, J3 = 2J1, the square-
kagomé lattice with J2 = 2J1, the sawtooth chain and the
two-leg ladder with J2 = 3J1). For all these systems, ex-
cept the square-kagomé lattice with J2 = J1, the numbers
of the extra spin states do not increase with increasing
of the lattice sizes that indicates their irrelevance in the
thermodynamic limit. For the square-kagomé lattice with
J2 = J1, as for the checkerboard [25] and the kagomé [26]
lattices, we find much more extra spin states, however,
our data restricted to finite systems are not sufficient to
find reasonable tendencies for the thermodynamic limit.
Furthermore, we have to discuss whether the independent
localized magnon states are separated by a finite energy
from higher-energy states. We postpone a discussion of
this issue till Section 4 where the results of the exact di-
agonalization for finite systems are presented.

We are interested in the contribution of the indepen-
dent localized magnons of smallest area to the thermody-
namics of the spin systems. To find this contribution we
must calculate the part of the partition function of the spin
system, Z(T, h, N) =

∑
j exp (−Ej(h, N)/kT ) (j denotes

all states of the system of N spins s on a lattice), which
comes from the independent localized magnons. Denoting
this quantity by Zlm(T, h, N) we have

Zlm(T, h, N) =
nmax∑

n=0

gN (n) exp
(
−En(h)

kT

)

= exp
(
−EFM − hsN

kT

)nmax∑

n=0

gN (n) exp
( µ

kT
n
)

(3)

with µ = ε1 − h.
An important step for further calculation of

Zlm(T, h, N) (3) is a mapping onto a hard-core object lat-
tice gas. Consider an auxiliary lattice in which each site
can be occupied or not by a hard-core object (monomer,
dimer, hexagon or square) which corresponds to a local-
ized magnon of smallest area (see Figs. 1, 2). Let us de-
note by N the number of sites of the auxiliary lattice;
the relation between N and N for the considered spin
systems is given in Table 1. We note that gN (n) is sim-
ply the canonical partition function Z(n,N ) of n hard-
core objects placed on a lattice with N sites. Further-
more, Ξ(T, µ,N ) =

∑
n exp(µn/kT )Z(n,N ) is the grand

canonical partition function of hard-core objects placed
on a lattice with N sites and µ is the chemical potential.
As a result, according to equation (3) we arrive at the
basic relation between the thermodynamic quantities of
independent localized magnons and hard-core models, i.e.
Zlm(T, h, N) = exp(−(EFM − hsN)/kT )Ξ(T, µ,N ).

The calculation of Ξ(T, µ,N ) for a classical hard-core
object lattice gas (usually in the thermodynamic limit), in
general, is a nontrivial problem [27]. It may be convenient
to perform such calculations using the occupation number
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representation. Let us introduce the occupation number
ni which takes two values, 0 and 1, depending whether
the site i of the auxiliary lattice is empty or occupied,
i = 1, . . . ,N . Then the grand canonical partition function
of hard-core objects can be rewritten in the following way

Ξ(T, µ,N ) =

∑

n1=0,1

. . .
∑

nN=0,1

exp

(
µ

kT

N∑

i=1

ni

)
R(n1, . . . , nN ), (4)

where the function R(n1, . . . , nN ) �= 1 appears if the hard-
core objects are extended (dimers, hexagons, squares)
rather than simple monomers. For example, for the saw-
tooth chain, for which the corresponding hard-core objects
are rigid dimers, we have R(n1, . . . , nN ) =

∏
i(1−nini+1)

and all the terms in (4) which correspond to two adjacent
sites of the auxiliary lattice being occupied have dropped
out.

Using the relation between the independent local-
ized magnons partition function Zlm(T, h, N) and the
grand canonical partition function of hard-core object lat-
tice gas Ξ(T, µ,N ) we get the following result for the
Helmholtz free energy (per site) of the independent lo-
calized magnons

Flm(T, h, N)
N

=
EFM

N
− hs − kT

ln Ξ(T, µ,N )
N

. (5)

The entropy Slm(T, h, N) = −∂Flm(T, h, N)/∂T and
the specific heat Clm(T, h, N) = T∂Slm(T, h, N)/∂T fol-
low immediately from equation (5). We can also cal-
culate the average number of hard-core objects 〈n〉 =∑N

i=1〈ni〉 = kT∂ ln Ξ(T, µ,N )/∂µ which yields the mag-
netization 〈Sz〉lm = sN − 〈n〉.

Next, we turn to the specific lattice gases which are re-
lated to the considered spin systems. Although the results
for various lattice gases are not new and can be found
in the literature [27] we present some of them here for
easy references in view of further discussions for the spin
systems.

3.1 Monomers

The independent localized magnon states in the diamond
and dimer-plaquette chains as well as in the square-
kagomé lattice can be mapped onto a lattice gas of
monomers (see panels a and b in Fig. 1, panel a in
Fig. 2 and Tab. 1). The calculation of the thermodynamic
quantities for the lattice gas of monomers is simple. We
have Z(n,N ) = Cn

N = N !/(n!(N − n)!), Ξ(T, µ,N ) =∑N
n=0 Cn

N exp(µn/kT ) = (exp(µ/kT )+1)N or, using equa-
tion (4), Ξ(T, µ,N ) = (

∑
n=0,1 exp(µn/kT ))N = (1 +

exp(µ/kT ))N . The Helmholtz free energy of the gas of
monomers reads

Flm(T, h, N)
N

=
EFM

N
− hs − N

N
kT ln

(
1 + exp

µ

kT

)
(6)

and therefore
Slm(T, h, N)

kN
=

N
N

(
ln (1 + expx) − x exp x

1 + exp x

)
, (7)

Clm(T, h, N)
kN

=
N
N

(
x
2

)2

cosh2 x
2

, (8)

〈Sz〉lm
sN

= 1 − 1
s

N
N

exp x

1 + exp x
(9)

with x = µ/kT . Equations (7, 8) are symmetric with
respect to x → −x. We note that at saturation µ = 0
and equation (7) yields Slm(T, h1, N)/kN = (N/N) ln 2.
That is the value of the residual entropy per site obtained
earlier for the diamond and dimer-plaquette chains [11].
The specific heat Clm(T, h, N)/kN , equation (8), exhibits
two symmetric maxima of height Cmax ≈ 0.43922884 at
x ≈ ±2.39935728. The universal dependences of (Ns −
〈Sz〉lm)/N , equation (9), of Slm/kN , equation (7), and of
Clm/kN , equation (8), are shown in Figures 3, 4 (for a
more detailed discussion of these figures, see Sect. 4).

We may consider an improvement of a lattice gas de-
scription of low-lying energy levels of spin systems tak-
ing into account higher-energy states which are separated
from the hard-core object states by a gap. According to
equation (4) within a lattice gas model there are only two
states at each lattice site. Namely, the site may be either
empty (ni = 0) and such a state occurs with the probabil-
ity ∝1, or the site may be occupied by monomer (ni = 1)
and such a state occurs with the probability ∝exp(µ/kT ).
We may increase the number of states at each sites in-
troducing an additional higher-energy state of monomers
which occurs with the probability ∝exp((µ−U)/kT ) and
U is large positive on-site energy. Obviously, if U → ∞ the
higher-energy states are irrelevant, but for finite U they
become relevant as temperature grows. In the spin picture,
the second state corresponds to a higher-energy state with
a wave function located in the area which is mapped onto
one site of the auxiliary lattice. Our calculations confirm
that the made assumption really yields an improvement
for higher temperatures (see the corresponding panels in
Figs. 3, 7, 8). The grand partition function of the modified
lattice-gas model can be easily calculated

Ξ(T, µ,N ) =
(

1 + exp
µ

kT
+ exp

µ − U

kT

)N
. (10)

From equation (10) we find the entropy, the specific heat,
and the magnetization using usual thermodynamic rela-
tions. The corresponding results are illustrated in Fig-
ures 3, 7, 8 assuming values for U related to the en-
ergy separation between the localized magnon states and
higher-energy states for finite spin lattices, see Section 4.
The improved approximation agrees with exact diagonal-
ization results up to higher temperatures in comparison
with the monomer lattice gas predictions (6)–(9).

3.2 One-dimensional dimers

The independent localized magnons in the sawtooth chain,
the two-leg ladder and two kagomé-like chains can be
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Fig. 3. The universal dependences of (sN −〈Sz〉lm)/N (9), Slm/kN (7) and Clm/kN (8) (monomer universality class) together
with the corresponding results for finite spin systems (diamond chain with N = 18, J1 = 1, J2 = 3 [left column], dimer-plaquette
chain with N = 20, J1 = J2 = 1, J3 = 2 [middle column], square-kagomé lattice with N = 18, J1 = 1, J2 = 2 [right column]).
The universal dependences are shown by solid lines, the exact diagonalization data are shown by symbols. Note that the exact
diagonalization data for the lowest temperature coincide with the universal dependences for monomers. We also show by thin
broken lines the analytical results which follow from (10) with U = 1.57, 0.58, 1.34 for the diamond chain, dimer-plaquette
chain and square-kagomé lattice, respectively, which are in good agreement with numerical data for higher temperatures.

mapped onto a one-dimensional lattice gas of rigid dimers
(see panels c, d, e, f in Fig. 1 and Tab. 1). The grand par-
tition function Ξ(T, µ,N ) (4) of rigid dimers on a chain
of N sites with periodic boundary conditions can be cal-
culated using the transfer-matrix method. The resulting
expression for Ξ(T, µ,N ) reads

Ξ(T, µ,N ) = λN
1 +λN

2 , λ1,2 =
1
2
±
√

1
4

+ exp
µ

kT
. (11)

In the thermodynamic limit N → ∞ only the larger eigen-
value of the transfer matrix plays role in (11) and we have

Flm(T, h, N)
N

=
EFM

N
− hs

− N
N

kT ln

(
1
2

+

√
1
4

+ exp
µ

kT

)
. (12)

For the entropy, specific heat, and magnetization we find
from equation (12)

Slm(T, h, N)
kN

=
N
N

⎛

⎝ln

(
1
2

+

√
1
4

+ exp x

)

−x

⎛

⎝1
2
− 1

4
√

1
4 + expx

⎞

⎠

⎞

⎠ , (13)

Clm(T, h, N)
kN

=
N
N

x2 exp x

8
(

1
4 + exp x

) 3
2
, (14)

〈Sz〉lm
sN

= 1 − 1
s

N
N

⎛

⎝1
2
− 1

4
√

1
4 + expx

⎞

⎠ , (15)



30 The European Physical Journal B

 0

 0.25

 0.5

 0.75

       

(N
s 

- 
m

ag
ne

tiz
at

io
n)

 p
er

 s
ite

DIAMOND, J2=2

 0

 0.25

 0.5

 0.75

       

 e
nt

ro
py

 p
er

 s
ite

  

 

 0

 0.25

 0.5

 0.75

-3 -2 -1  0  1  2  3

 s
pe

ci
fi

c 
he

at
 p

er
 s

ite
 

 (h - h1)/kT 

 

 0

 0.25

 0.5

 0.75

       

(N
s 

- 
m

ag
ne

tiz
at

io
n)

 p
er

 s
ite

SQUAGO, J2=1

 0

 0.25

 0.5

 0.75

       

 e
nt

ro
py

 p
er

 s
ite

  

 

 0

 0.25

 0.5

 0.75

-3 -2 -1  0  1  2  3

 s
pe

ci
fi

c 
he

at
 p

er
 s

ite
 

 (h - h1)/kT 

 

Fig. 4. The universal dependences for monomers (solid lines)
of (sN − 〈Sz〉lm)/N , Slm/kN and Clm/kN together with the
corresponding results for finite spin systems belonging to the
monomer universality class but which have extra (not hard-
monomer) spin states: the diamond chain with N = 18, J1 = 1,
J2 = 2 (left column), the square-kagomé lattice with N = 18,
J1 = J2 = 1 (right column). The numerical results for spin
systems are shown for temperatures kT = 0.01 (filled symbols)
and kT = 0.1 (empty symbols).

respectively. Note that equations (13, 14) are not sym-
metric with respect to x → −x. Equations (13–15) were
examined in references [8,12,13] in the context of the
sawtooth chain. We also note that at saturation, i.e. at
µ = 0, equation (13) gives the values of the residual en-
tropy per site for the kagomé-like chains and the two-
leg ladder, Slm(T, h1, N)/kN = (N/N) ln((1 +

√
5)/2)

[11]. The universal dependences (Ns − 〈Sz〉lm)/N , equa-
tion (15), Slm/kN , equation (13), and Clm/kN , equa-
tion (14), are shown in Figures 5 and 6 (for a more detailed
discussion of these figures, see Sect. 4). The specific heat
Clm(T, h, N)/kN exhibits two maxima of heights Cright

max ≈
0.34394234 and Cleft

max ≈ 0.26887020 at (h − h1)/kT ≈
2.81588498 and (h−h1)/kT ≈ −4.05258891, respectively.

Again we may consider an improvement of a lattice gas
description of the low-lying energy levels of spin systems.
One way to consider higher-energy states was suggested
by Zhitomirsky and Tsunetsugu [8]. These authors treat
the factor 1−nini+1 in (4), as the V → ∞ limit of a gener-
alized factor exp(−(V/kT )nini+1) = 1 + (exp(−V/kT ) −
1)nini+1. We may relax the hard-core restriction assuming
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Fig. 5. The universal dependences of (sN − 〈Sz〉lm)/N ,
Slm/kN and Clm/kN (one-dimensional dimer universality
class) together with the corresponding results for finite spin
systems (sawtooth chain with N = 20, J1 = 1, J2 = 2 [left
column] and two-leg ladder with N = 20, J1 = 1, J2 = 3 [right
column]). The universal dependences which follow from (11)
are shown by thick solid (N → ∞) and dashed lines (N = 10),
the exact diagonalization data are shown by symbols. Note
that the exact diagonalization data for the lowest temperature
coincide with the universal dependences for dimers. We also
show by thin broken lines the analytical results which follow
from (18) for N = 10 with U = 1.00 and 1.10 for the saw-
tooth chain and two-leg ladder, respectively, which are in good
agreement with numerical data for higher temperatures.

the intersite interaction V to be large but finite and ap-
proximately equal to the energy separation between the lo-
calized magnon states and higher-energy states (in Ref. [8]
the energy gap was also estimated using variational cal-
culations). As a result, we arrive at a one-dimensional
lattice gas with a finite nearest-neighbor repulsion. The
grand partition function of such a gas is calculated by the
transfer-matrix method and reads

Ξ(T,µ,N ) = λN
1 + λN

2 ,

λ1,2 =
1
2

+
1
2

exp
µ − V

kT

±
√

1
4

+ exp
µ

kT
− 1

2
exp

µ − V

kT
+

1
4

exp
2(µ − V )

kT
.

(16)
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Fig. 6. The universal dependences of (sN−〈Sz〉lm)/N , Slm/kN and Clm/kN for one-dimensional dimers (N → ∞ — thick solid
lines; finite N — dashed lines) together with the corresponding results for finite spin systems belonging to the one-dimensional
dimer universality class but which have extra (not hard-dimer) spin states: the two-leg ladder with N = 20 (corresponds to
N = 10), J1 = 1, J2 = 2 (left column), the kagomé-like chain shown in Figure 1e with N = 18 (corresponds to N = 6), J = 1
(middle column) and the kagomé-like chain shown in Figure 1f with N = 20 (corresponds to N = 4), J1 = 1 (right column).
The numerical results for spin systems are shown for temperatures kT = 0.01 (filled symbols) and kT = 0.1 (empty symbols).

The thermodynamic quantities which follow from equa-
tion (16) are in a good agreement with exact diagonaliza-
tion data for the sawtooth chain up to higher temperatures
in comparison with the predictions in the V → ∞ limit [8].
In the spin picture a finite V corresponds to higher-energy
states with wave functions located on the areas which
are mapped onto two adjacent sites of the auxiliary one-
dimensional lattice. In addition, we can consider a sim-
ilar improvement as for the monomer problem, namely
we can assume additional higher-energy states of dimers
which occur with the probability ∝exp((µ−U)/kT ), where
U is positive and large. That means that more than one
dimer is allowed on the same site, but that cost addi-
tional energy U . In the spin picture, we take into ac-
count a higher-energy state with a wave function located
in the area which is mapped onto one site of the auxiliary
one-dimensional lattice. Thus, combining the assumption
about higher-energy state of dimer at each site and the
weakening of the hard-core restriction we arrive at the

following formula for the grand partition function

Ξ(T,h,N ) = λN
1 + λN

2 + λN
3 ,

λ3 −
(

1 + exp
µ − V

kT

)
λ2−exp

µ

kT

(
1+exp

(
− U

kT

)

− exp
(
− V

kT

))
λ + exp

2µ − U − V

kT
= 0; (17)

in the thermodynamic limit N → ∞ only the largest root
of the cubic equation enters the thermodynamic quanti-
ties. In the limit U → ∞ equation (17) transforms into
equation (16). In what follows we consider only the other
limit V → ∞ when equation (17) becomes

Ξ(T, µ,N ) = λN
1 + λN

2 ,

λ1,2 =
1
2
±
√

1
4

+ exp
µ

kT
+ exp

µ − U

kT
. (18)

From equation (18) we find in a usual way the entropy,
the specific heat, and the magnetization, which are shown
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in Figures 5, 7, 8 assuming values for U again obtained
by inspection of the energy spectrum of finite spin lattices
(for more details see Sect. 4).

3.3 Hexagons on a triangular lattice and squares
on a square lattice

For completeness we give here some remarks on the
two-dimensional lattice gases of hard-core objects which
emerge in the context of localized magnons in some two-
dimensional frustrated quantum antiferromagnets. Such
lattice gases are much more complicated subject for rig-
orous analytical or numerical studies.

For the kagomé and star lattices the independent lo-
calized magnons of smallest area can be put in correspon-
dence to the hard hexagons on a triangular lattice (see
panels b and c in Fig. 2 and Tab. 1). The grand canoni-
cal partition function for the hard hexagons on triangular
lattice, Ξ(T, µ,N ), was found by Baxter (hard-hexagon
problem, see Ref. [27]). The parametric dependence of
(Ξ(T, µ,N ))1/N on the activity z = exp(µ/kT ) in the
thermodynamic limit N → ∞ can be found in refer-
ence [27]. The peculiarity of the hard-hexagon model is
the existence of a phase transition at a critical value of
activity zc = (11 + 5

√
5)/2 ≈ 11.09016994 (xc = ln zc ≈

2.40605913). The low-activity phase is uniform (liquid)
with identical average occupation numbers of hexagons
on each of three triangular sublattices, n1 = n2 = n3,
whereas the high-activity phase is nonuniform (solid) with
n1 > n2 = n3. The value of the entropy per site at z = 1 is
0.33324272k; this number gives the residual entropy per
site due to localized magnon states of smallest area for
the kagomé and star lattices [8,11,13]. The hard-hexagon
problem in the context of the low-temperature magne-
tothermodynamics of the kagomé lattice in the vicinity
of the saturation field was discussed in detail in refer-
ences [8,13].

For the checkerboard lattice the independent localized
magnons of smallest area can be put in correspondence to
the hard-core squares on a square lattice, where the size
of the hard squares corresponds to the nearest-neighbor
and the next-nearest-neighbor exclusions (see panel d in
Fig. 2 and Tab. 1). We are not aware for an exact analyti-
cal solution of such a model, but approximative results are
available [28]. In the context of the low-temperature mag-
netothermodynamics of the checkerboard lattice in the
vicinity of the saturation field the hard-square problem
has been discussed recently in reference [29]. The value of
the entropy per site at z = 1 obtained applying a combina-
tion of the transfer-matrix calculations and Monte Carlo
is about 0.2946k [29] (a direct calculation for periodic 8×8
(8 × 10) lattice yields about 0.2949k (0.2948k) [30]).

4 Exact diagonalization versus hard-core
object description

After presenting explicit expressions for the thermody-
namic quantities by using the correspondence between the

localized magnon states of the quantum spin system and
a classical hard-core description we now test our analyti-
cal results by comparison with finite-lattice numerical re-
sults of the full spin-1/2 system. Note that the classical
equations for the monomer problem, see Section 3.1, do
not depend on the size of the system, whereas the cor-
responding classical equations for the dimer problem, see
Section 3.2, are size dependent. For the number of degen-
erate states presented in Tables 2 and 3 we could consider
systems of up to N = 30 spins, since we can restrict the
calculation of sectors with high total Sz. For the ther-
modynamics we used the data of full diagonalization of
spin systems of either N = 18 or N = 20. For the esti-
mation of the temperature and field ranges, in which the
hard-core description is valid, and also for the estimation
of the on-site energy parameter U , see Sections 3.1 and
3.2, it is useful to find a measure for the thermodynami-
cally relevant energy separation ∆ between the localized
magnon states and the other eigenstates of the spin sys-
tem. For that we have calculated the integrated low-energy
density of states at saturation field and define ∆ as that
energy value above the localized magnon ground-state en-
ergy, where the contribution of the higher-energy states
to the integrated density of states becomes as large as the
contribution of the localized-magnon states.

In Figures 3 and 4 we present the results for the mag-
netization (Ns−〈Sz〉)/N , the entropy S/kN , the specific
heat C/kN in dependence on (h−h1)/kT for spin systems
belonging to the monomer universality class, i.e. for the
diamond chain, the dimer-plaquette chain and the square-
kagomé lattice. Note that the universal formulas (6)–(9)
depend only on (h− h1)/kT , i.e. they are identical for all
temperatures kT = 0.01, 0.1, 0.2, 0.3, 0.5 considered in
Figures 3 and 4.

Figure 3 corresponds to spin systems, for which the
number of degenerate spin states at the saturation Wsp

equals the number of states of the corresponding hard-core
object lattice gas W , see Table 2. Furthermore, these spin
systems exhibit a quite large energy separation ∆. We find
∆ ≈ 1.5 for the diamond chain (J1 = 1, J2 = 3, N = 18),
∆ ≈ 0.6 for the dimer-plaquette chain (J1 = J2 = 1,
J3 = 2, N = 20), and ∆ ≈ 1.5 for the square-kagomé
lattice (J1 = 1, J2 = 2, N = 18). Obviously, in Fig-
ure 3 the curves for the spin systems at temperatures up
to kT ≈ 0.1 ≈ 0.1∆ are almost identical with the univer-
sal curves. But also for kT > 0.1 the qualitative behavior
of the entropy, the specific heat, and the magnetization is
quite well modeled by the universal formulas (7–9). The
modified lattice-gas model, see equation (10), with param-
eters U related to ∆ indeed leads to an improved quanti-
tative agreement with the results for the spin systems at
higher temperatures.

Figure 4 corresponds to spin systems, for which the
number of degenerate spin states at the saturation field
Wsp is larger than the number of states of the correspond-
ing hard-core object lattice gas W , see Table 2. However,
for the diamond chain with J2 = 2J1, we have only one ex-
tra spin state, Wsp = W +1, which becomes irrelevant for
larger N . By contrast, there is a noticeable disagreement
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Table 2. Number of degenerate states: lattice gas of monomers and spin systems. For a gas of monomers on N sites we have
W = Ξ(T,µ = 0,N ) = 2N .

N W Diamond Diamond Dimer-plaquette Square-kagomé Square-kagomé
(J2 = 2J1) (J2 = 3J1) (J3 = 2J1) (J2 = J1) (J2 = 2J1)

3 8 9 8 8 18 8
4 16 17 16 16 42 16
5 32 33 32 32 52 32
6 64 65 64 64 – –
7 128 129 128 – – –
8 256 257 256 – – –

Table 3. Number of degenerate states: one-dimensional hard-dimer lattice gas and spin systems. For one-dimensional dimer
gas on N sites we have W = Ξ(T, µ = 0,N ) = λ1(µ = 0)N + λ2(µ = 0)N . Since λ1(µ = 0) = Φ is the golden number and
λ2(µ = 0) = 1−Φ = −1/Φ we may use the properties of powers of Φ and its reciprocal. Namely, for any even integer n Φn +1/Φn

is a whole number; in particular, 2, 3, 7, 18, 47, 123, 322 for n = 0, 2, 4, 6, 8, 10, 12. (For any odd integer n Φn − 1/Φn is a
whole number; in particular, 1, 4, 11, 29, 76, 199 for n = 1, 3, 5, 7, 9, 11.) See: http://goldennumber.net/phipower.htm

N W Sawtooth Two-leg ladder Two-leg ladder Kagomé-like, Kagomé-like,
(J2 = 2J1) (J2 = 3J1) Figure 1e Figure 1f

4 7 7 8 7 9 9
6 18 18 19 18 20 20
8 47 47 48 47 49 –
10 123 123 124 123 – –
12 322 322 323 322 – –

between Wsp and W for the square-kagomé lattice with
J2 = J1 (Tab. 2). Similarly to the kagomé [8,13,26] and
the checkerboard [25] lattices, for the square-kagomé lat-
tice with J2 = J1 we have extra spin states which are
not covered by the hard-core description illustrated in
Section 3.1. The number of these extra spin states de-
pends on system size N . From our numerical data for
N = 18, 24, 30 we are not able to conclude whether
the localized magnon states of smallest area dominate the
low-temperature thermodynamics in the thermodynamic
limit. Moreover, for these systems with extra spin states
we estimate significantly lower separations ∆ of higher-
energy states, namely ∆ ≈ 0.3 for the diamond chain
(J1 = 1, J2 = 2, N = 18) and ∆ ≈ 0.2 for the square-
kagomé lattice (J1 = 1, J2 = 1, N = 18). As a con-
sequence we may find (see Fig. 4) a perfect agreement
between the spin and the hard-core data only for very
low temperatures, but realize a quantitative deviation al-
ready for kT ≈ 0.1. For the square-kagomé lattice with
J1 = 1, J2 = 1 the larger number of extra spin states
leads to a more pronounced deviation from the universal
formulas. Nevertheless, the numerical data illustrate that
the localized magnon states of smallest area contribute
substantially to the partition function thus leading to a
low-temperature behavior which is at least qualitatively
in agreement with the universal behavior given by equa-
tions (7–9).

Next, we discuss the results for the magnetization
(Ns − 〈Sz〉)/N , the entropy S/kN and the specific heat
C/kN in dependence on (h − h1)/kT for spin systems
belonging to the dimer universality class, i.e. for the

sawtooth chain, the frustrated two-leg ladder and the
kagomé-like chains of type I and II, see Figures 5 and
6. Again, the universal formulas (11)–(15) depend only on
(h − h1)/kT , i.e. they are identical for all temperatures
kT = 0.01, 0.1, 0.2, 0.3 considered in Figures 5 and 6.
However, as mentioned already above, they are size de-
pendent. Hence, we compare the spin data for systems of
finite size N with the hard-core data of corresponding size
N (cf. Tab. 1) obtained from equation (11). Note, how-
ever, that the systems considered in Figures 5 and 6, left
panel, correspond to N = 10, where the curves for the
finite hard-dimer system are already close to those for the
thermodynamic limit.

The results shown in Figure 5 belong to systems with
no extra spin states, i.e. Wsp = W , see Table 3, and quite
large energy separation ∆ ≈ 0.8 (sawtooth chain, N =
18) and ∆ ≈ 0.9 (two-leg ladder, J1 = 1, J2 = 3, N =
20). Consequently, we find an excellent agreement between
the spin data and the hard-dimer data for temperatures
up to kT ≈ 0.1 ≈ 0.1∆. For larger temperatures again
the qualitative behavior is well described by the universal
formulas derived from equation (11). The modified hard-
core description based on equation (18) with appropriate
parameters U leads to a further quantitative improvement,
see Figure 5.

Figure 6 corresponds to spin systems, for which the
number of degenerate spin states Wsp at the saturation
field for finite spin systems is larger than the number of
states W of corresponding finite hard-core object lattice
gas, see Table 3. However, we have only one (two-leg lad-
der, J1 = 1, J2 = 2) or two (kagomé-like chains I and
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Fig. 7. The temperature dependences of the specific heat
C/kN vs. kT/h1 for several finite spin systems. Monomer uni-
versality class: left panels, from bottom to top, the diamond
chain with J1 = 1, J2 = 3, N = 18, the diamond chain
with J1 = 1, J2 = 2, N = 18, the square-kagomé lattice
J1 = 1, J2 = 2, N = 18. One-dimensional dimer universality
class: right panels, from bottom to top, the two-leg ladder with
J1 = 1, J2 = 3, N = 20, the two-leg ladder with J1 = 1, J2 = 2,
N = 20, the kagomé-like chain shown in Figure 1e with J = 1,
N = 18. The thin solid lines correspond to h = 0.95h1, the solid
lines correspond to h = h1, the thick solid lines correspond to
h = 1.05h. For comparison we present analytical results for
monomers (left panels) and dimers, N → ∞ (right panels)
(empty symbols; triangles correspond to h = 0.95h1 , squares
correspond to h = h1, circles correspond to h = 1.05h1). We
also show by filled symbols the temperature dependence of the
specific heat as it follows from equation (10) with U = 1.57
for the diamond chain and U = 1.34 for the square-kagomé
lattice or from equation (18) for N → ∞ with U = 1.10 for
the two-leg ladder.

II) extra spin states, which become irrelevant for larger
N . The energy separation ∆ for these systems with ex-
tra spin states we estimate to ∆ ≈ 0.9 for the ladder
(J1 = 1, J2 = 2, N = 20), ∆ ≈ 0.4 for the kagomé-
like chain I (N = 18), and ∆ ≈ 0.2 for the kagomé-like
chain II (N = 20). Therefore we obtain (see Fig. 6) a per-
fect agreement between the spin and the hard-core data
only for very low temperatures, but realize a quantita-
tive deviation already for kT ≈ 0.1. Note that for the the
kagomé-like chain II, the size N = 20 of the spin system
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Fig. 8. Constant entropy curves as a function of magnetic
field and temperature, S(T, h, N)/kN = const., for the dia-
mond chain with N = 18, J1 = 1, J2 = 3 (left) and the two-leg
ladder with N = 20, J1 = 1, J2 = 3 (right). From bottom
to top: S(T, h, N)/kN = 0.05, 0.10, 0.15, 0.20, 0.25. Solid
lines correspond to analytical results which follow from equa-
tion (7) (left panel) or from equation (13) (right panel); bro-
ken lines correspond to analytical results for S(T, h, N)/kN =
0.20, 0.25 which follow from equation (10) with U = 1.57 (left
panel) or from equation (18) for N → ∞ with U = 1.10 (right
panel); symbols correspond to exact diagonalization data for
finite spin systems.

corresponds to only N = 4, and the finite size effects are
clearly largest in this case.

From the experimental point of view the reported re-
sults manifest themselves most interestingly in a drastic
change of the low-temperature specific heat, when the
magnetic field passes the saturation field, and in the max-
imum of the isothermal entropy at saturation field lead-
ing to an enhanced magnetocaloric effect (for a general
discussion of the magnetocaloric effect for quantum spin
systems, see Ref. [12]). We illustrate that in Figures 7
and 8, where we present finite-lattice data for spin sys-
tems, but hard-core results for the thermodynamic limit
to demonstrate that the discussed effects remain relevant
for N → ∞.

In Figure 7 we present the temperature dependence
of the specific heat at three values of the external mag-
netic field, h = 0.95h1, h1, 1.05h1, for several spin sys-
tems. Firstly, we note that within the hard-core object
description the specific heat equals to zero at saturation
field h = h1. That is also observed in a certain range
of low temperatures around zero for the diamond chain
with J2 > 2J1, the square-kagomé lattice with J2 > J1

or the two-leg ladder with J2 > 2J1, but we do not ob-
serve the zero-value region of C/kN at low temperatures
for the spin systems having extra spin states and low sep-
aration ∆. Secondly, we see that the specific heat in the
vicinity of the saturation field (but h �= h1) has an extra
low-temperature peak which is satisfactorily reproduced
within the hard-core object lattice gas approach (compare
lines and empty triangles and circles in Fig. 7). The hard-
core description can be improved assuming a finite on-site
energy parameter U (filled triangles and circles in Fig. 7).
As it was already noticed in reference [8] in the context
of the sawtooth chain and the kagomé lattice, the exper-
imental observation of the low-temperature peak of the
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specific heat can be a sign of highly degenerate localized
magnon states.

Finally, we consider in Figure 8 adiabatic cooling pro-
cesses, i.e. we show curves of constant entropy as a func-
tion of magnetic field and temperature. Again the exact
diagonalization data for the diamond chain with N = 18,
J1 = 1, J2 = 3 (left panel) and the two-leg ladder with
N = 20, J1 = 1, J2 = 3 (right panel) are in a good
agreement with the universal curves for monomers and
one-dimensional dimers. Taking the data for spin systems,
which show some asymmetry between h > h1 and h < h1,
we observe, that an efficient cooling to very low temper-
atures can be achieved by an adiabatic demagnetization
via lowering the magnetic field from above saturation till
saturation.

5 Summary

We have presented a universal description of thermody-
namic properties of a wide class of frustrated quantum
spin antiferromagnets at low temperatures in the vicinity
of the saturation field. The reason for that is a dominant
contribution of highly degenerate localized magnon states
to the partition function, which can be calculated using a
hard-core object representation. We have provided exact
diagonalization data to justify such a picture.

The spin systems hosting localized magnons can be
grouped into different universality classes of hard-core lat-
tice gases, namely gases of hard squares, hard hexagons,
hard dimers or hard monomers. Comparing the analyt-
ical predictions with numerical data for finite spin sys-
tems we have found that the hard-core picture describes
accurately the spin physics near the saturation field and
at sufficiently low temperatures. Since other states of the
spin system, not described by the hard-core model, be-
come relevant as temperature grows, the hard-core de-
scription is less accurate, but it remains qualitatively cor-
rect at higher temperatures. The hard-core object lattice
gas models may be improved by relaxing the hard-core
constraint. Such an improvement breaks the universality,
but provides a better quantitative agreement with exact
diagonalization results for higher temperatures and larger
deviations from the saturation field.

We emphasize that some peculiarities of the thermo-
dynamic quantities arising due to the localized magnon
states are of interest from the experimental point of view.
Thus, the specific heat at the saturation field remains al-
most zero below a certain temperature whereas at fields
slightly above/below the saturation field the specific heat
exhibits a well-pronounced extra low-temperature peak.
A frustrated spin system hosting localized magnons also
exhibits a large magnetocaloric effect in the vicinity of the
saturation field; similarly to an ideal paramagnet.
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UKR 17/13/05). One of the authors (O.D.) thanks the Abdus
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autumn of 2005.
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Condens. Matter 18, 4967 (2006)

15. N.B. Ivanov, J. Richter, Phys. Lett. A 232, 308
(1997); J. Richter, N.B. Ivanov, J. Schulenburg, J.
Phys.: Condens. Matter 10, 3635 (1998); A. Koga,
K. Okunishi, N. Kawakami, Phys. Rev. B 62, 5558 (2000);
J. Schulenburg, J. Richter, Phys. Rev. B 65, 054420 (2002);
A. Koga, N. Kawakami, Phys. Rev. B 65, 214415 (2002)

16. T. Nakamura, K. Kubo, Phys. Rev. B 53, 6393 (1996);
D. Sen, B.S. Shastry, R.E. Walstedt, R. Cava, Phys. Rev.
B 53, 6401 (1996); V. Ravi Chandra, D. Sen, N.B. Ivanov,
J. Richter, Phys. Rev. B 69, 214406 (2004); G.C. Lau,
B.G. Ueland, R.S. Freitas, M.L. Dahlberg, P. Schiffer,
R.J. Cava, Phys. Rev. B 73, 012413 (2006)

17. M.P. Gelfand, Phys. Rev. B 43, 8644 (1991); F. Mila, Eur.
Phys. J. B 6, 201 (1998); A. Honecker, F. Mila, M. Troyer,
Eur. Phys. J. B 15, 227 (2000)

18. Ch. Waldtmann, H. Kreutzmann, U. Schollwöck,
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